
Class-Aware Attention for Multimodal Trajectory Prediction

Bimsara Pathiraja, Shehan Munasinghe, Malshan Ranawella, Maleesha De Silva,
Ranga Rodrigo and Peshala Jayasekara

Abstract— Predicting the possible future trajectories of the
surrounding dynamic agents is an essential requirement in
autonomous driving. These trajectories mainly depend on the
surrounding static environment, as well as the past movements
of those dynamic agents. Furthermore, the multimodal nature of
agent intentions makes the trajectory prediction problem more
challenging. All of the existing models consider the target agent
as well as the surrounding agents similarly, without considering
the variation of physical properties. In this paper, we present a
novel deep-learning based framework for multimodal trajectory
prediction in autonomous driving, which considers the physical
properties of the target and surrounding vehicles such as
the object class and their physical dimensions through a
weighted attention module, that improves the accuracy of the
predictions. Our model has achieved the highest results in the
nuScenes trajectory prediction benchmark, out of the models
which use rasterized maps to input environment information.
Furthermore, our model is able to run in real-time, achieving
a high inference rate of over 300 FPS.

Index Terms— Autonomous Driving, Trajectory Prediction,
Deep Learning

I. INTRODUCTION

In an autonomous driving system, the ego vehicle must
be aware of where the other surrounding dynamic agents
are going to be in the next couple of seconds. Once these
surrounding agents are detected and tracked through time,
their possible future trajectories have to be predicted with
a reasonable accuracy. This helps the autonomous vehicle
to plan safe collision-free maneuvers in complex conditions
such as dense urban scenarios.

However, forecasting future trajectories of the tracked
dynamic objects is a challenging task due to two main
factors. First, it involves a higher uncertainty because each
agent can have more than one plausible trajectory at a time,
which is dependent only on its intent. This challenge can be
overcome by producing a multimodal output, which is a set
of possible trajectories, and their probability distributions.

Second challenge is combining the information about the
surrounding static environment structure, with the informa-
tion about the past movements of other agents. There are
mainly two ways an autonomous vehicle can get these static
environment information such as lane lines, lane centers,
pedestrian crossings, intersections, etc. Most of the current
autonomous vehicles rely on a predefined High-Definition
(HD) map to get these information. These HD map based
static information can be encoded in vector, graph or raster-
ized representations [1]–[4] However, the process of creating
these HD maps compatible with graph or vector based rep-
resentations is expensive, time consuming, and less-scalable.
As an alternative, there has been recent work [5], [6] which

proposes accurate methods for generating rasterized versions
of semantic map information in real time, eliminating the
need for expensive predefined maps. In this work we focus
on rasterized map based input representations [4], [7], [8],
instead of graph based representations as it allows to be used
along with low-cost autonomous driving pipelines.

The trajectory of a dynamic agent also depends on its
physical properties such as the object class (e.g.: bicycle,
car, truck, bus, etc) type and physical dimensions (length,
width) which define its kinematics. Most of the prior work
do not take this fact into consideration and treats all dynamic
agents equal regardless of their unique physical properties.
In our work, we try to include the physical properties of
target and surrounding agents as inputs to the model, and
model their interaction using an object-class based attention
module.

In this paper, we present a novel deep-learning based
framework for multimodal trajectory prediction in au-
tonomous driving which employs a combination of a CNN-
based spatial-feature extractor for static information extrac-
tion, and several LSTM-based layers for temporal feature
extraction, along with a relative distance and object-class
based attention module, that additionally considers the phys-
ical properties of each dynamic agent. With these contribu-
tions, we have achieved 7.7% improvement of MinADE5

becoming the highest ranked model that uses rasterized
map representations in the nuScenes trajectory prediction
benchmark [9].

II. RELATED WORK

In this section, we review recent publications on trajectory
prediction under two important topics: representing static en-
vironment information, and multimodal trajectory prediction.

Representing Static Environment Information: Knowl-
edge on the surrounding static environment need to be
captured in order to make a reasonably accurate trajectory
prediction for the surrounding dynamic agents. Many prior
work rely on Convolutional Neural Networks (CNN) [4],
[7], [10] to encode the scene context from a rasterized map
image. The advantage of this approach is these rasterized
map images can be generated online using birds-eye-view
segmentation techniques, which eliminates the need for ex-
pensive predefined HD maps [5], [6].

Recently, another branch of trajectory prediction models
have been developed based on Graph Neural Networks
(GNN) based methods [1]–[3]. In these models, the static
information is encoded as graph representations, which ex-
plicitly needs to be obtained from predefined HD maps.



Though these models can have performance improvements
over rasterized map based methods, the need for HD maps
restrict them from being deployed in a resource constrained
autonomous driving system. Due to this reason, we have
based our work on rasterized map based approaches.

Multimodal Trajectory Prediction: Early approaches to
trajectory prediction were unimodal which output only a
single trajectory per agent [11]–[13]. These models fail at
complex scenarios and aren’t able to capture the uncertainties
involved.

In reality the movements of dynamic agents are mul-
timodal, and hence an autonomous driving system must
be able to predict these multiple possible trajectories and
their corresponding likelihoods [4], [7]. A typical problem
these multimodal approaches encounter is known as mode
collapse [14], in which multiple output modes collapses
into to a single mode during training. A recent multimodal
approach, ReCoAt [8], end-to-end learns to predict 6 possible
trajectories at once, but is prone to mode collapse.

We develop our work based on multimodal approaches,
and incorporate a learning strategy that overcomes mode-
collapse.

III. PROPOSED METHOD

In this section we present the main components of the
model that we are proposing, and outline the main contribu-
tions we have made.

A. Input Representation

In order to predict the possible future trajectories of a
target agent, the trajectory prediction model must take all
the information about the past dynamic information of the
agent itself (S0), the past dynamic information of the sur-
rounding agents (S1, ..., SN ), and the information about the
surrounding static environment (M). Further, we input the
object physical information (Oi), which is a tuple consisting
of the object class, physical length and width (C, l, w) of
agent i. The input X to the model can be represented as:

X = (S0, S1, ..., SN ,M,O0, O1, ..., ON ) (1)

Past dynamic information of the ith agent over a time
period of Th is given by,

Si = {st0−Th+1
i , st0−Th+2

i , ..., st0i } (2)

where sti contains the position (x, y), velocity (v), acceler-
ation (a) and yaw rate (θ̇) at the time step t. The current
time step is taken as t0. All the coordinates are with respect
to the frame centered on the target agent’s position at the
current time step (t0) with its current heading aligned with
the x-axis.

The environment information is encoded as a rasterized
bird’s eye view map as in [4], and it includes the road ge-
ometry, drivable area, lane structure and direction of motion
along each lane, locations of sidewalks and crosswalks.

B. Output Representation

The output of the model must indicate the possible paths
that the target agent can take, given the inputs X . To account
for multimodal nature of the expected prediction, our model
outputs K modes of future trajectories for each target agent,
along with their probabilities.

The output of a single mode can be denoted as,

Ŷ = {(xt
j , y

t
j)|t ∈ {t0 + 1, ..., t0 + Tf}}Kj=1 (3)

where, Tf is the time period for which the future trajectories
are predicted (prediction horizon). In addition, the model also
outputs a score for each trajectory predicted.

C. Encoding Inputs

As shown in Figure 1, the early stages of the model ex-
tracts features from the input X and produces an intermediate
feature vector.

Map Encoder: To extract high level semantic information
from the rasterized bird’s-eye-view map M , our model
employs a ResNet-50 [15] encoder, as in [4]. For each bird-
eye-view rasterized image which is in the size of 240×240×3,
the CNN encoder generates a 2048 feature vector, and a
following fully connected layer further reduces its dimension
to 128. We denote the output of the map encoder as hM .

Trajectory Encoder: The past dynamic information of
the target agent (S0) and the past dynamic information of
the surrounding agents (S1, ..., SN ) are fed into trajectory
encoder modules. As illustrated in Figure 2, this module
consists of a 1D convolutional layer followed by two stacked
LSTM layers. Encoded target trajectory is denoted as hS0

.

D. Relative Distance and Object-class based Attention

The output of the trajectory encoder corresponding to the
surrounding agents are passed into the weighted distance
attention module. The future trajectory of the target agent
depends on the other surrounding agents. However, the
attention the target agent should pay to a surrounding agent
depends on the distance between the target agent and the
surrounding agent.

To model this, a distance attention function is introduced
in [8]. In our work, we extend this idea, by introducing
learnable parameters into this attention calculation.

If Qpos is the current position of the target agent and
Kpos is the current positions of the surrounding agents,
and V is the output from the trajectory encoder modules
corresponding to target agents, this distance-based attention
can be modeled as,

DistAtt(Qpos,Kpos, V )

= βdist(Qpos,Kpos)V

= Softmax(fdist(Qpos,Kpos))V
(4)

where,

fdist(Qpos,Kpos) =
α1

Wdist∥Qpos −Kpos∥ (5)
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Fig. 1: Block diagram of the model architecture
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Fig. 2: Trajectory Encoder Module

in which Wdist is the learnable weight matrix.
Furthermore, we encode object class and the interaction

between target and surrounding object classes using weighted
area attention. Here, the area of the agent is chosen to encode
the characteristics of the object class.

AreaAtt(Qarea,Karea, V ) = βarea(Qarea,Karea)V

= Softmax(farea(Qarea,Karea))V
(6)

where,

farea(Qarea,Karea) = α2W (Qarea/Karea) (7)

The output of the distance attention and area attention
modules are concatenated as hatt.

E. Trajectory Decoder

The encoded features of the map encoder, trajectory en-
coder and the attention module, target agent class, width
and length of the target agent are concatenated to make the
context vector for the decoder.
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Fig. 3: Trajectory Decoder Module

zl = Concat{hM , hS0
, hatt, O} (8)

As described in MTP [4], we use multiple trajectory
decoders so the model can output different trajectories. As
illustrated in Figure 3, each trajectory decoder consists of
two heads - the trajectory head and the score head.

Trajectory head consists of two fully connected layers to
predict future x, y values of the target agent. In the score
head, the predicted trajectory is sent through a trajectory
encoder and the resulting vector is concatenated with the
context vector and passed through fully connected layers
followed by a softmax layer to produce the probability score
for the proposed trajectory.



F. Loss Functions

We experimented optimizing our model using the ReCoAt
loss [8] and the MTP loss [4]. The ReCoAt loss resulted in
mode collapse, and the MTP loss seem to better produce
diverse results over the K modes. Therefore, we decided
to proceed with the MTP loss as the main optimization
criterion.

G. Implementation Details

Our model uses a dropout ratio of 0.2 to minimize over-
fitting, and Nadam optimization algorithm as the optimizer.
The ELU activation function is used in every dense layer. In
training, the learning rate is started with 6e-4 and the step
size of the step learning rate scheduler is set to 2 and trained
for 50 epochs. We use a computational platform comprising
of an Intel Corei9-9900K CPU and a Nvidia RTX2080Ti
GPU and took nearly 4 hours to complete training.

IV. EXPERIMENTS

A. Dataset

We train and validate our model using the publicly avail-
able nuScenes [16] dataset. The dataset consists of 1000
scenes, taken from urban driving in Boston, USA and Sin-
gapore, with each scene being 20 seconds in length, and
sampled at 2Hz. Each scene includes hand-annotated past
tracks of the dynamic agents as well as the high definition
maps of the surrounding environment. We use the same
official train-validate-test split of the nuScenes prediction
challenge benchmark. The prediction task is to use the past
2 seconds of object history and the map to predict the next
6 seconds.

B. Baselines

We compare our model with two physics based ap-
proaches, and six recently proposed multimodal trajectory
prediction models as the baselines.

Constant velocity and yaw: The trajectory of the object
if it maintains its current velocity and yaw unchanged.

Physics oracle: We compare our model with the physics
based model introduced in [10]

Multiple-Trajectory Prediction (MTP) [4]: MTP is a
CNN-based model that uses a rasterized representation of
the scene and the target vehicle state as the main inputs.
It outputs a fixed number of trajectories (modes) and the
corresponding probability scores.

Multipath [7]: Multipath, similar to MTP, uses a CNN
based with the same input representation. Additionally it also
uses an anchor-based representation in its regression heads
as described in [7].

CoverNet [10]: In CoverNet, trajectory prediction is for-
mulated as a pure classification problem. It generates a set of
trajectories from a physics based dynamic model, and then
predicts the likelihood of each trajectory.

Trajectron++: A graph-based recurrent model.
ReCoAt [8]: A model that combines a CNN, A Recurrent

Neural Network, and a distance based attention score. We
implement ReCoAt as described in [8].

MHA-JAM [17]: A model that applies multi-head atten-
tion considering a joint representation of the static scene and
the surrounding agents.

C. Metrics

All of the following metrics have been taken in relation
to the nuScenes trajectory prediction benchmark [16].

MinADEk and MinAFDEk: These two metrics are calcu-
lated over k most probable trajectories output by the models.

Miss rate: Miss rate is the factor of missed predictions.
Offroad rate: This metric computes the factor of trajec-

tories which were predicted to be off-road, not within the
drivable area. This requires the map information to compute.

D. Quantitative Results

We report our results on the standard benchmark split of
the nuScenes prediction dataset in Table V, in comparison
with the baseline on the nuScenes leaderboard [9]. Our model
outperforms in 5 out of 6 reported metrics. For the remaining
metrics our model has the second best value. Currently,
our model holds the state-of-the-art values for nuScenes
trajectory prediction benchmark among the methods that use
rasterized map representations.

For the metrics MinADEk and MinFDEk, our model
achieves the best results for k ∈ {1, 5} with significant
improvement to the previous models, which means that our
model can predict the best trajectory and it can choose the
best trajectory as well. In addition to that, we achieve the
previous best Off-Road Rate as well which means that our
model is in accordance with the environmental context as
well.

E. Ablation Studies

To get a deeper insight into how each component of the
model, i.e. the rasterized map, trajectory encoder, attention
modules, contribute to improve the results following ablation
studies are performed.

Effect of Attention module: Our model mainly depends
on the map, past motion of the target agent and the inter-
action of the target and surrounding agents. As shown in
Table I, the distance and area based attention we proposed
outperform the original distance based attention introduced
in [8]. This shows the importance of learnable parameters in
the attention module. Next, we add an area based attention
in addition to the distance based attention. The new addition
also improves the MinADE5 by 3.5%.

Effect of adding physical information of the agent: In
most of the implementations on trajectory prediction, all the
agents are considered equal and only modeled using their
past movements. Table II shows that, considering the target
agent type and physical dimensions improve all the metrics
except for the MinFDE5.

Effect of adding stacked LSTMs of the agent: Out of the
experiments done, the use of stacked LSTMs with dropout
improved our results significantly. To show the effect of that,
we compare the results of the base model with single LSTM
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Fig. 4: Examples of predicted trajectories: Model predictions in red. Ground truth trajectories in green. (a), (b):Predicting
straight trajectories. (c), (d), (f): Predicting both sharp and wider turns at junctions and u-turns (f): Predicting multiple paths
when needed.

TABLE I: Effect of Attention

Exp minADE1 minADE5 minFDE1 minFDE5 missRate1 missRate5 Off-Road Rate
ReCoAt [8] (our implementation) 4.34 1.88 10.07 3.99 0.91 0.72 0.10

Weighted distance attention 3.66 1.73 8.46 3.57 0.90 0.67 0.08
Weighted distance + area attention 3.59 1.67 8.43 3.36 0.90 0.66 0.07

TABLE II: Effect of Physical Dimension

Exp minADE1 minADE5 minFDE1 minFDE5 missRate1 missRate5 Off-Road Rate
Ours - without physical properties 3.73 1.76 8.62 3.48 0.91 0.70 0.08

Ours - with physical properties 3.66 1.73 8.46 3.57 0.90 0.67 0.08

TABLE III: Effect of Stacked LSTMs

Exp minADE1 minADE5 minFDE1 minFDE5 missRate1 missRate5 Off-Road Rate
Ours - with 1 LSTM 3.73 1.76 8.66 3.69 0.91 0.67 0.09
Ours - with 2 LSTMs 3.66 1.73 8.46 3.57 0.90 0.67 0.08

layer and 2 LSTM layers. As given in Table III, all the
metrics are improved.

Effect of different parts of the model:
To show the effectiveness of the map and the attention

modules we remove each component from the base model
and compare the results. As shown in Table IV when the
map is added to the target trajectory encoder, a significant
improvement can be seen in MinADEk and MinFDEk

metrics. Only MissRate5 increases slightly but all other
metrics are improved. This proves the benefit of adding the
scene information to the trajectory prediction task. The use
of target trajectory encoder and attention module without
the map slightly improves 4 out of 6 metrics. However, we
can achieve significant improvements when both the map
and attention is used at the same time, which shows both
information were learned to work cohesively. The major



TABLE IV: Ablation Study

Exp minADE1 minADE5 minFDE1 minFDE5 missRate1 missRate5 Off-Road Rate
Target encoder 4.57 2.22 10.76 4.87 0.92 0.73 0.14

Target encoder + Map 3.71 1.90 8.60 4.06 0.89 0.74 0.13
Target encoder + Attention 4.55 2.28 10.65 5.03 0.92 0.73 0.16

Target encoder + Map + Attention 3.66 1.73 8.46 3.57 0.90 0.67 0.08

TABLE V: Comparison

Exp minADE1 minADE5 minFDE1 minFDE5 missRate5 Off-Road Rate
Const vel and yaw [10] 4.61 4.61 11.21 11.21 0.91 0.14

Physics oracle [10] 3.69 3.69 9.06 9.06 0.88 0.12
MTP [4] 4.42 2.22 10.36 4.83 0.74 0.25

Multipath [7] 4.43 1.78 10.16 3.62 0.78 0.36
CoverNet [10] - 2.62 11.36 - 0.76 0.13

Trajectron++ [18] - 1.88 9.52 - 0.70 0.25
MHA-JAM [17] 3.69 1.81 8.57 3.72 0.59 0.07

ReCoAt [8] (our implementation) 4.34 1.88 10.07 3.99 0.72 0.10
Ours 3.59 1.67 8.43 3.36 0.66 0.07

improvement in Off Road Rate shows how the model is
able to generate meaningful trajectories as Off Road Rate
measures how the predicted trajectories actually exists in the
drivable area of the map.

F. Qualitative Results

Figure 4 shows trajectory predictions from our model with
both distance and area attention and map encoder. The results
shows that our model is capable of predicting trajectories for
the hardest cases as well.

V. CONCLUSION

Prediction of the future trajectories of dynamic agents in
the surrounding is a primary task of an autonomous vehicle.
We propose a novel deep-learning based framework with an
attention module which considers physical properties such
as the object classes and the physical dimensions of the
target and surrounding vehicles, which define their kinemat-
ics. With this, we have been able to improve MinADE5

by 7.7% in the nuScenes trajectory prediction benchmark,
outperforming other models that use rasterized map based
environment information representations.
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